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Yes, Virginia, there ARE Ekman spirals

Currents relative to 32 m averaged for 5 h 
on 12 Apr 1972 during the AIDJEX Pilot 
Study

McPhee and Smith, J. Phys. Oceanogr.,1976
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Eddy Viscosity

BUT the surface layer only extends some small fraction of the planetary
 scale, ~0.05u*0/f,  typically ~5m in the ocean, ~150 m in the atmosphere.
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Turbulence spectra

6-h average w variance spectrum at 20 m 
below the ice during Ice Station Weddell, 
1992.

Information in the area-preserving vertical 
velocity spectrum alone (ε, λpeak) provides 
an estimate of local stress:
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IOBL Similarity

Wind event at Ice Station Weddell (1992)

McPhee and Martinson, Science.,1994

  !̂=e!̂"   ( !̂ = i /K* )



λ, K measurements
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Kfit = f / (2a2 ) (from the Ekman solution)
Ksim = K*u*0

2 / f (Similarity bulk estimate)

KT(bulk) =
! w 'T '
"T /"z

(from mean properties in the IOBL)



Polar mixed layers make wonderful calibration baths. 
Choose a time when turbulent heat flux is about zero 
and adjust thermometers to agree

KT(bulk) estimate



Surface Layer

Ekman Layer

Similarity (continued)

For similarity, K*  is constant in the Ekman layer, 
and if  ! increases linearly in the surface 

layer (where " = # z ), the surface layer extent is
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So now we can put together 
an “inverse drag law:”

Similarity (continued)
0.1 m s 1

Ice
12 m

20 m

26 m

32 m

"V
E
"

2 m
4 m

 

v̂0
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So now we can put together 
an “inverse drag law:”

Similarity (continued)
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û*0

  = v̂E
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Similarity (continued)
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Impact of Stratification

Neutral stratification, 2 length scales (the smaller scale governs):
|z|, and the planetary scale, u*0/f, and associated mixing lengths

Melting or freezing at the ice/water interface introduces 
buoyancy flux, and a third turbulent scale, the Obukhov length:

When L is small and positive, buoyancy flux from melting quells 
turbulence, decreases turbulence scales, and increases shear.

When L is small in magnitude and negative, buoyancy flux from 
freezing enhances turbulence, increases turbulence scales, and 
decreases shear.
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AIO, Ch 4



Stratification (continued)

McPhee, M. G, 1981: An analytic similarity theory for the planetary boundary layer stabilized by 
surface buoyancy, Boundary-Layer Meterol., 21, 325-339.
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The impact of rapid melting is to reduce the turbulent length scale, 
and increase the velocity scale. It increases both A and B, which 
reduces the effective drag and increases the turning angle.

The rapidly melting ice (water 
about 2oC) drifts about 6.5 km 
farther in a day.

Stratification (continued)
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Stratification: Shallow Pycnoclines



Stratification: Shallow Pycnoclines

In the western Arctic, there has been a 
remarkable increase in freshwater 
content over the past decade. This tends 
to stratify the water column closer to the 
surface, so the depth of the mixed layer 
adds a 4th length scale to the IOBL 
turbulence.



To address this part of the problem 
requires treatment of fluxes in the 
upper part of the pycnocline, which 
requires rudimentary numerical 
modeling.

A first-order turbulent closure 
model I call steady local turbulence 
closure (SLTC) uses the same 
similarity principles as the 1981 
similarity theory, but considers 
stratification in the outer part of the 
IOBL.

AIO, Ch 9



Statically Unstable Buoyancy Flux
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Statically Unstable Buoyancy Flux



Drift 

Relative current

Statically Unstable Buoyancy Flux

Estimates of λ from wavenumber peaks in 
w spectra at the edge of a freezing lead 
during the 1992 LEADEX project. During 
this time the average buoyancy flux was:

AIO, section 5.3

McPhee and Stanton, 1996, J. Geophys. Res., 101, 6409-6428.



Neutral (no interface buoyancy flux) OBL

Surface layer

Mixing layer
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Positive buoyancy flux from melting

Surface layer

Mixing layer
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ρ

Seasonal Pycnocline



Destabilizing buoyancy flux from freezing

Surface layer

Mixing layer

Pycnocline

ρ

fu /2*0** !" #=

û*0
w 'b ' 0 < 0
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Calculate the annual average of 
dynamic height near the center of the 
traditional Beaufort Gyre from 2003 
to 2011.
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Ekman Pumping

τ0 is the stress exerted on the ocean surface, modified by ice. 
In late summer, ice internal ice forces are typically small and 
the force balance is approximately



For each year of the NCEP-CFSR record, take the daily average wind stress at 
each grid point in the 1-deg radius circle centered at 75N, 135W, adjust for 
ice Coriolis force when present, then integrate wpyc over the Aug-Sep-Oct 
period to get a measure of pycnocline displacement due to Ekman pumping.
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In the first decade of the NCEP-CFSR reconstruction, late summer 
downwelling occurred below about 75°N, with upwelling in the northern part 
of the Canada Basin.  Average Sep ice coverage was extensive.
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In the most recent decade, late summer downwelling occupies the entire 
Basin. One implication is that the upper ocean in the Canada Basin is a heat 
source rather than sink for the deeper ocean.
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Implications

Currents on the periphery of the Beaufort Gyre have increased dramatically 
(5-6 x) in the past few years, particularly just offshore of the Beaufort and 
Chukchi shelves.

The stronger currents may be preventing thick, multiyear ice advected 
southward on the eastern side of the BG from reaching its interior.

During summer, increased temperature contrast between more open water in 
the west and southward advection of compact ice in the east may be 
enhancing late summer anticyclonic atmospheric conditions (and Ekman 
pumping).

Thus a positive feedback may be at play between convergence of seasonally 
available fresh water from melting and runoff, and early removal of ice in the 
western Beaufort Gyre.



Discussion...


